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Abstract
A deterministic network of impedances on the Sierpinski gasket fractal is
considered, with particular regard to low-generation, or mesoscopic, systems.
We study the fractal set of the resonances of the circuit and present calculations
on frequency-dependent systems. The condition of an intermediate size can
lead to an oscillatory scaling of the total impedance that disappears in the
asymptotic limit: several examples are given.

PACS numbers: 64.60.Ak, 05.45.Df, 84.30.Bv

1. Introduction

The initial interest in the electrical properties of fractals was motivated by the need to explain
the features of existing systems, such as the dielectric properties of percolating clusters or the
ac response of some heterogeneous systems [1, 2]. More recently, physicists and electrical
engineers [3] have recognized the self-similarity of fractals as a useful tool for engineering
new devices, and exploited it to design fractal antennas [4], fractal diffraction gratings [5],
fractal photonic bandgap slabs [6]. While the former research field involved the study of
very big model systems (i.e. fractals with generation n → ∞), the latter typically deals with
low-size and deterministic fractals.

The most studied among these systems is by far the Sierpinski gasket. The problem of
resistor networks on such a fractal has been the object of many studies, aimed at explaining the
dc transport properties of the percolation backbone [1]. The more general issue of a network of
complex impedances has been examined some years ago by several authors (see in particular
the comprehensive review by Clerc et al [2]) that were almost exclusively interested in the
percolative side of the problem, i.e. that relating to the ac dielectric response of inhomogeneous
materials. Therefore they examined the critical behaviour (n → ∞) of the system and found
its critical exponents.

0305-4470/04/378823+11$30.00 © 2004 IOP Publishing Ltd Printed in the UK 8823
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Figure 1. The Sierpinski gasket of impedances.

In the present paper we address the problem of mesoscopic networks of complex
impedances on the Sierpinski gasket, namely, of systems of small size that stay away from
the asymptotic regime. Since the networks we consider are relatively small and constituted
by common passive elements such as resistors, inductors and capacitors, they can be easily
reproduced in any electronics lab. Yet they display a highly nontrivial behaviour that comes
as a direct consequence of the topology of the system and is lost in the thermodynamic limit.

The paper is organized as follows. In section 2 we obtain the decimation map for
the network of impedances; we study its fixed points, asymptotic behaviour and invariant
subspaces. In section 3 we study the distribution of poles of the map, that correspond to
resonances of the fractal circuit. In section 4 we analyse the dependence on the frequency of
the total impedance both for ideal (n → ∞) and realistic (n → 1) systems, and we stress the
differences between the two cases. Section 5 studies the asymptotic behaviour of ‘irregular’
points of the map, and finds that their number is infinite, also connecting this feature to the
results found in many other models on fractal systems. The conclusions are in section 6.

2. The map

We consider a fractal built from a triangle with an electrical pole on each of the three vertices
a, b and c and 3 different (and in general complex) impedances rab, rbc, rca , one at each link.
The recursive rule for the construction of the fractal is shown in figure 1 (where we always
call a, b and c the external poles).

We seek a decimation relation connecting the impedances of generation n to those of
generation n + 1. The tool we shall use is the well-known ‘star-triangle’ transformation
(or star-delta, or Y − � transformation [7]), which allows us to go from ‘triangle’ to ‘star’
variables and back by adding or subtracting a supplementary pole, as shown in figure 2. The
variables rab, rbc, rca and x, y, z are connected by simple algebraic relations, that we do not
report here.

The procedure for the decimation of the gasket is outlined in figure 3; we omit the detailed
calculation and give only the final result.

We will work with ‘star’ variables throughout. The map is:

xn+1 = 3

2
xn +

ynzn

2(xn + yn + zn)
(1)
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Figure 2. The star-triangle transformation: the ‘triangle’ (left) and ‘star’ (right) circuits are
equivalent under a suitable choice of the variables.

abrn

bcrn

carn
nx

ny

nz

nx ny

nz

n+1x

n+1z

n+1y

abrn+1

bcrn+1
carn+1

Figure 3. Decimation procedure for the Sierpinski gasket.

together with the two permutations (xn, yn, zn) → (yn, zn, xn) → (zn, xn, yn). We denote the
map by T: (xn+1, yn+1, zn+1) = T (xn, yn, zn).

It is a rational map of degree 2 from Ĉ
3

to Ĉ3 (where Ĉ = C ∪ {∞}). A main feature of
the map is the invariance under any permutation of the variables x, y, z. As a consequence,
the properties of a particular triple of impedances (x, y, z) also hold for all its permutations.
Also, the properties of a particular one- or two-dimensional subspace (for instance a subspace
with parametric equations (x(t), y(t), z(t))) are shared by all the subspaces obtained by
permuting its equations (e.g. (z(t), y(t), x(t))). For the sake of conciseness, in such cases we
will generally leave this fact implicit, treating only one permutation without mentioning the
others. A second feature of the map T is that it is homogeneous of degree 1 in its variables:
T (λx, λy, λz) = λT (x, y, z), λ ∈ C. We refer the reader to the specific literature [8] for the
language of dynamical systems and rational maps.

An important remark: in the rest of the paper we will often talk about ‘negative
resistances’. Now, we recall that the only physical constraint on the impedance Z of a passive
element (be it a resistance, capacitance, inductance or a combination of all three) is that its
real part be non-negative: Re(Z) � 0. So what does a ‘negative resistance’ (or negative real
part) mean? A physical sense can be recovered from the fact that the map is homogeneous:
if a result holds for the triple (x, y, z) it also holds for all the triples of the form (λx, λy, λz)

with λ ∈ C; so the result is ‘physically meaningful’ provided that there exists a λ ∈ C such
that Re(λx), Re(λy), Re(λz) � 0. For instance, a triple of impedances such as (−1, 1, 1)
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makes sense since it can be multiplied by an imaginary factor, say i, to give (−i, i, i), that is
a capacitance and two inductances. As a counterexample, the triple (1 + i,−1 + i,−i) cannot
be mapped by multiplication into any physically meaningful point.

Fixed points of the map. The vector space (x, x,−x) (and permutations) is a line of repelling
fixed points for T. The only attractive fixed point is the point at infinity xn → yn → zn → ∞
(except for subspace II that is discussed below). The series expansion of T near the fixed point
gives the following asymptotic laws [2, 9]:

|xn| ∼ (
5
3

)n |xn − yn| ∼ (
4
3

)n
. (2)

Invariant subspaces. There are 3 subspaces that are invariant under the application of T:

(i) z = y The map is

xn+1 = 3

2
xn +

y2
n

2xn + 4yn

yn+1 = 3

2
yn +

xnyn

2xn + 4yn

. (3)

This will be the most extensively studied case.
(ii) z = −y These are the points such that the impedance between the vertices b and c in

figure 1 is always 0. In this subspace only the variable x evolves:

xn+1 = 3

2
xn − y2

n

2xn

yn+1 = yn = y0. (4)

The fixed point of this subspace is (∞, y0,−y0); the asymptotic law is |xn| ∼ (3/2)n,
while the phase of xn when n → ∞ depends on the initial conditions.

(iii) x ∈ R, z = y In this case the impedance between b and c in figure 1 is real, while the
other two are in general complex. Note that subspace III overlaps with subspace I when
y and z are both real, and with subspace II when y and z are both imaginary; this is not
a problem for the following discussion. Note also that for subspace III the homogeneity
property is restricted to λ ∈ R.

3. Poles of the map

The zeros and poles of the nth iterate of the map, T n(x, y, z), correspond to points where the
impedance of the nth generation gasket is respectively zero or infinite, that is, to resonances
of the nth generation circuit. Since the set of the zeros and the set of the poles share the same
properties, we choose to focus on the poles.

We want to find the general structure of the backward orbit of the point ∞, that is, the set
of the points C = {(x, y, z) : T n(x, y, z) = ∞ for some n}. We distinguish the order of the
iterate of the map by calling Cn the set of the points (x, y, z) that are poles of the (n + 1)th
iterate: Cn = {(x, y, z) : T n+1(x, y, z) = ∞}, so that C = ⋃∞

n=0 Cn.
The set C0 consists of the points that make the denominator of T vanish, T (C0) = ∞, that

is the plane x + y + z = 0. In order to find the set C1 we impose that T (C1) = C0 (so that
T 2(C1) = ∞) and find the surface of equation 3x2 + 3y2 + 3z2 + 7xy + 7xz + 7yz = 0. We
can proceed iteratively this way: at each step T (Cn+1) = Cn. In general Cn is a homogeneous
algebraic surface of order 2n and, due to the homogeneity, it is a generalized cone, the axis
of which is the line x = y = z. The cone is best visualized by sectioning it with a plane
orthogonal to its axis, which was done in figure 4 (here the plane is x + y + z = 1). The first 3
curves are shown on the left, while on the right we show the (numerically computed) full set
of curves. Every Cn surface splits into 2n−1 distinct surfaces that intersect each other only at
the vertex 0: the union set C therefore contains 2n − 1 distinct surfaces.
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Figure 4. The cone C sectioned by the plane x + y + z = 1. Left: the intersection of the sets
C1, C2, C3 (labelled 1, 2 and 3) with the plane. Right: the intersection of the whole set C with the
plane. The triangle in the centre is the intersection of C with the octant x, y, z > 0. The threefold
symmetry of the figure is apparent.

The set C is fractal, and thus its box-counting dimension can be computed (which could
give an estimate of the complexity of our system with respect to regular circuits). We have
computed it with numerical methods: it turns out to be dF = 2.82 ± 0.03.

4. Dependence on frequency

A practical way to implement the system above is to choose a generation n, put imaginary
impedances (capacitors or inductors) on the basic cell and let the frequency vary, measuring
the total impedance for each value of the frequency. For example we can choose two different
inductances and one capacitance; the impedances of generation 0 are (in units i):

x0 = ωL1 y0 = ωL2 z0 = − 1

ωC
. (5)

This can be seen as a parametric curve with parameter ω; the poles of the system are the
intersections of the curve with the surface C introduced in the previous section. As above we
define Cωn as the set of the frequencies that are mapped to infinity after n iterations of the map
(the resonances of the system); we also define Cω = ⋃∞

n=0 Cωn. Since C is a homogeneous
algebraic surface of order 2n, Cωn = {ω : T n+1(ωL1, ωL2,−1/ωC) = ∞} is a 2n-degree
algebraic equation in the unknown ω2; thus (dropping negative solutions), Cωn consists of 2n

points along the positive real axis and a system of generation n has exactly 2n+1 − 1 poles
along the real axis.

The response of the system (that is, its total impedance) to a variable-frequency input is
shown in figure 5 (left) for a very big system (n = 50). It is found that there is a fractal
distribution of poles in a range of frequencies from 0 to the value ω̃ = 1/

√
C · L̃, where

L̃ = min(L1, L2) (so for large n part of the information about the system, namely one of the
Ls, is lost), while the response is smooth (without poles) for ω > ω̃. The high-frequency
inductive behaviour (Z ∼ ω) can be recognized. For realistic systems (n < 10, so with a
number of poles <210) the region with poles does not extend to 0 (figure 5, right); rather, the
response becomes smooth for ω → 0 with a capacitive law (Z ∼ −1/ω). In the realistic
case of a small non-zero real part of the impedances, the poles give place to resonance peaks,
whose positions are roughly the same as those of the poles.
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Figure 5. Frequency dependence of the total impedance (in imaginary units) for a basic cell with
2 inductances and a capacitor with values C1 = C2 = L = 1. Left: final impedance for a gasket
of generation n = 50. Right: final impedance for a more realistic system with n = 7 (6561 links).

The positions of the poles, and thus of the smooth and the non-smooth regions, can be
tuned by adjusting L1,2 and C. However, it is found that the fractal dimension of the set Cω

does not depend on the particular choice of L1,2 and C. This is easily understood, since of the
3 parameters (a) the information about the value of the bigger of L1,2 is lost, as we have seen,
for n → ∞; (b) another parameter can be factored out without changing the position of the
poles and (c) the remaining one can be factored in ω, which results in a dilatation of the scale
that does not affect the fractal dimension. The computed value of the fractal dimension of Cω

turns out to be dF = 0.68 ± 0.03.
By choosing 2 capacitors and 1 inductance as the starting points (x0 = ωL, y0 =

−1/ωC1, z0 = −1/ωC2) we get similar results. The response is smooth for 0 < ω < ω̃,
where ω̃ = 1/

√
C̃ · L and C̃ = max(C1, C2), and has a fractal distribution of poles for ω > ω̃

(figure 6, left). For systems with small n (figure 6, right) the non-smooth region does not
extend to ∞ and the asymptotic law is inductive: Z ∼ ω.

Once again the fractal dimension of Cω does not depend on the values of L,C1,2; we find
dF = 0.56 ± 0.02.

5. Oscillating asymptotic behaviour

For the sake of simplicity we first restrict our examination to some invariant subspaces of the
map; then we consider the general case.

5.1. Subspace I

We set z = y and consider equation (3). We define the reduced variables tn = xn+1/xn and
un = yn/xn; the new recursion relations read

un+1 = 6u2
n + 4un

u2
n + 6un + 3

= U(un) tn+1 = 3

2
+

u2
n+1

4un+1 + 2
. (6)
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Figure 6. Frequency dependence of the total impedance (in imaginary units) for a basic cell with
2 capacitors and an inductance with values L = C1 = C2 = 1. Left: final impedance for a gasket
of generation n = 50. Right: final impedance for the system with n = 7.

We have decoupled the variable u, that now evolves with its own monodimensional map U;
furthermore, the variable t depends step by step on u only.

There are three fixed points for the map U, namely, -1 repelling (that corresponds to the line
of repelling fixed points x = −y of the map (3)), 1 attractive (corresponding to the attractive
fixed point at infinity of the original map x = y = ∞), and 0 repelling (corresponding to any
y = 0 for the map (3), which is of no physical interest since it amounts to two null impedances
on the basic triangle).

Our main interest about the map U concerns the existence of periodic points. Suppose in
fact that we have found a periodic point u0 of period p: up = Up(u0) = u0; from equation (6)
we also get a periodic point for the map in t: tp = t0. Turning back to the original variables,
from the periodicity of t we obtain

xp+1

xp

= x1

x0
; xp+2

xp+1
= x2

x1
; · · · x2p

x2p−1
= xp

xp−1
; (7)

and dividing term by term
xp

x0
= xp+1

x1
= xp+2

x2
= (· · ·) = xp+k

xk

(8)

so for any positive integer m

xmp+k = x(m−1)p+k

(
xp

x0

)
= x(m−2)p+k

(
xp

x0

)2

= (· · ·) (9)

=
(

xp

x0

)m

xk, k = 0, 1, . . . , p − 1. (10)

This means that the orbit of the system splits into p different branches, one for each of the first
p points. All branches display the same power-law behaviour, xn ∼ (xp/x0)

n
p , but starting

from a different point; at every step the system jumps from one branch to another: we call this
oscillating asymptotic behaviour (OAB). In a logarithmic plot of xn versus n this results in p
different straight lines, as exemplified in figure 7 for p = 3. A compact form for the overall
asymptotic law is

xn ∼ fp(n)(ap)n (11)
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Figure 7. Example of oscillating asymptotic behaviour for p = 3.

where ap = (xp/x0)
1/p and fp(n) is a p-periodic function of n. The same asymptotic law

holds for yn and, therefore, for the total impedance.
We can prove that there are no attractive periodic points for the map U. In fact, if an

attractive periodic point exists, then its basin of attraction contains at least one critical point
(i.e., a point u such that U ′(u) = 0) [8]. But the only two critical points of the map,
(1/16)(−9 ± i

√
15), can be shown to belong to the basin of attraction of the fixed point 1.

So, no attractive periodic point exists for any period p (there could possibly exist at most 2
irrationally indifferent periodic points, but we will not deal with this issue).

There are in general 2p + 1 periodic points of period p for the map (6) and it is easy to
prove that they are all real. In fact they are a subset of the Julia set J (U) of the map, i.e. the
closure of the set of all repelling fixed points of the map U. Now, the following basic property
holds for the Julia set [8]: suppose that u0 ∈ J (U); then J (U) is equal to the closure of the
set of all iterated preimages

{u : Un(u) = u0 for some n � 0}.
So it is enough to look at one periodic point; for example we can take the repelling fixed point
−1: by looking at the two preimages

U−1
± (u) = −3u + 2 ±

√
6u2 + 6u + 4

u − 6

we see (figure 8) that they always lie between −1 and 0, and so does the whole backward
orbit. So:

−1 � up � 0 ∀p

Being the Julia set infinite [8], the number of the periods p and of the values ap is also
infinite.

The existence of periodic renormalization group trajectories was recognized by McKay
et al in a frustrated Ising model on some hierarchical lattices [10] that also exhibited period
doubling cascade and chaotic behaviour; here we are dealing instead with periodic points of
the map of the variables’ ratios.
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Figure 8. The two preimages of U(u) between −1 and 0.

Derrida et al [11] discovered a phenomenon similar to that discussed in this section in
statistical models on hierarchical lattices such as the diamond lattice; they called it ‘oscillatory
critical amplitudes’ and connected its properties to the Julia set of the renormalization group
map. Doucot et al [12] predicted and experimentally measured log-periodic oscillations of
the magnetoresistance as a function of the magnetic field at low temperatures in a Sierpinski
gasket network of submicronic Al thin wires. Today the presence of log-periodic corrections to
scaling and complex exponents in statistical models is generally recognized as a consequence
of the discrete scale invariance of the underlying lattice and is found in a variety of systems
defined on fractals; see [13] for a review.

We stress that while the latter phenomena are found in statistical systems in the
thermodynamic limit, the phenomenon discussed in this section is a unique feature of limited-
size systems. Indeed it is found in correspondence with repelling periodic points of a rational
map: since it is impossible to tune impedances with infinite precision on the repelling point,
iterating the map will eventually drive the system away from the periodic orbit and lead it to
its attracting fixed point. So the oscillating behaviour is lost in the thermodynamic limit.

5.2. Subspace II

From equation (4) we are led to consider the map

un+1 = 3

2
un − 1

2un

(12)

with un = xn/yn = xn/y0; its fixed points are ±1 (repelling) and ∞ (attracting). The same
considerations as in the previous section can be applied here. In particular we can prove that
the Julia set of the map lies in the interval [−1, 1] of the real axis, so the repelling periodic
points are all real. There are no attractive periodic points since the only two critical points,
±i/

√
3, fall in the basin of attraction of ∞. There are 2p periodic points of period p (e.g., the

periodic points of period 2 are ±1/
√

5). Due to the fact that yn never changes its value, we
are dealing with an oscillating asymptotic behaviour with n = 0, that is with periodic points
of the map (4) itself.

5.3. Subspace III

In this case we are not able to find a decoupled equivalent system and are forced to look for
the solutions of a nonlinear system of two coupled equations (see the general case below).
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We find with numerical methods a set of 3-period complex points with the real (and possibly
integer) ratio a3 = (x3/x0) = 15; some of them are (setting x0 = 1 for all points):

y0 = −0.445 158 ± 0.925 134 i

y0 = −0.427 766 ± 0.448 792 i

y0 = −0.749 766 ± 0.310 933 i

(13)

5.4. General case

In 3 dimensions starting from the map T (equation (1)) we define the reduced dimensionless
variables tn = xn+1/xn, un = yn/xn and wn = zn/xn; we are led to the new recursion relations

un+1 = 3u2
n + 3un + wn + 3unwn

3 + 3un + 3wn + unwn

wn+1 = 3w2
n + 3wn + un + 3unwn

3 + 3un + 3wn + unwn

tn+1 = 3

2
+

un+1wn+1

2un+1 + 2wn+1 + 2
.

(14)

where we have decoupled the variables u and w, that evolve with their own map (un,wn) →
(un+1, wn+1), while the variable t depends step by step upon u and w. The considerations
of the previous cases still hold: in order to find an OAB we have to seek a periodic point
for the bidimensional map (un,wn) → (un+1, wn+1). This is a much harder task than the
previous, since it involves the solution of a nonlinear system of two equations: all we can say
is that in general the number of periodic points of period p is at most 2p+1. Indeed, most of
the properties we exploited for the one-dimensional rational maps do not hold anymore for
multidimensional maps; in particular, we are not able to find any bound for the Julia set.

If we exclude the points in common with any of the previous subspaces, we find no points
of period 2 but some (complex) points of period 3 of the map (un,wn) → (un+1, wn+1): for
example

(−1.213 33 ± 1.017 55 i, 0.755 07 ∓ 1.379 73 i)

(−0.925 235 ± 0.361 205 i,−0.483 867 ∓ 0.405 791 i)

(−0.937 869 ∓ 0.366 138 i, 0.305 229 ± 0.557 741 i)

(15)

The corresponding OAB of the map T has a3 = 1.6875 ± 0.726 184 i.

6. Summary and conclusions

In this paper we considered the problem of a network of impedances on a Sierpinski gasket.
The rational map associated with the renormalization of the network has been studied. The
peculiar topology of the network gives rise to a fractal distribution of resonances in the
impedance space; its fractal dimension has been calculated.

We have addressed the problem of the dependence on frequency of the response of the
system. The response is smooth except in a range of frequencies, that depends on the initial
conditions, where it shows a fractal distribution of resonances; its dF has been determined
for the most common cases. The difference between the thermodynamic limit and the more
realistic mesoscopic cases has been highlighted.



Electrical circuits on mesoscopic Sierpinski gaskets 8833

The study of several related rational maps shows that there exist points whose evolution
follows a power law modulated by periodic oscillations; the number of such points, of the
power law exponents and of the period values is infinite. This phenomenon is quite similar
to that found in other models on fractals and is usually referred to as log-periodic oscillations
[13]. The main difference is that in statistical models the log-periodic corrections to scaling
are a general feature of the asymptotic regime, arising from the underlying fractal structure.
On the contrary, in our deterministic model the oscillating behaviour shows up in relatively
small systems and disappears in the thermodynamic limit. Far from being a shortcoming, this
peculiarity gives the phenomenon a strong chance of being observed in real, purpose-built
systems.

We performed our calculations on the two-dimensional Sierpinski gasket: in doing so we
were motivated by the common interest, shared by physicists and engineers, about its electrical
properties. Anyway, the conditions under which we obtained our results do hold for many
self-similar structures: therefore it is reasonable to ask in which other fractals such results
remain valid. The closest nontrivial extension of our model is a network of impedances on
the 3D version of the Sierpinski gasket: we expect it to display a richer behaviour, due to the
higher number of degrees of freedom of its basic cell (6 versus 3) and to its higher degree of
connectivity. This issue will be examined in a forthcoming work [14].

References

[1] Gefen Y, Aharony A, Mandelbrot B B and Kirkpatrick S 1981 Phys. Rev. Lett. 47 1771
[2] Clerc J P, Giraud G, Laugier J M and Luck J M 1990 Adv. Phys. 39 191
[3] Jaggard D L 1990 On fractal electrodynamics Recent Advances in Electromagnetic Theory ed H N Kritikos and

D L Jaggard (New York: Springer)
[4] Puente C, Romeu J, Pous R, Garcia X and Benitez F 1996 Electron. Lett. 32 1

Puente C, Romeu J, Pous R, Garcia X and Benitez F 2001 Fractal and space-filling transmission lines, resonators,
filters and passive network elements Patent WO 01/54221

Gianvittorio J P and Rahmat-Samii Y 2002 IEEE Antennas Propag. Mag. 44 20
[5] Lehman M 2001 Opt. Commun. 195 11
[6] Weijia Wen, Lei Zhou, Jensen Li, Weikun Ge, Chan C T and Ping Sheng 2002 Phys. Rev. Lett. 89 223901
[7] Frank D J and Lobb C J 1988 Phys. Rev. B 37 302
[8] Blanchard P 1984 Bull. Am. Math. Soc. 11 85

Beardon A F 1991 Iteration of Rational Functions GMT 132 (New York: Springer)
Milnor J 2000 Dynamics in One Complex Variable 2nd edn (Braunschweig: Vieweg)
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